Termination w.r.t. Q of the following Term Rewriting System could be disproven:

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.


QTRS
  ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
head(cons(X, XS)) → X
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

head(cons(X, XS)) → X
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(head(x1)) = 2 + 2·x1   
POL(incr(x1)) = x1   
POL(n__incr(x1)) = x1   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = x1   
POL(tail(x1)) = 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
QTRS
      ↳ RRRPoloQTRSProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.

The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
tail(cons(X, XS)) → activate(XS)
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:

tail(cons(X, XS)) → activate(XS)
Used ordering:
Polynomial interpretation [25]:

POL(0) = 0   
POL(activate(x1)) = x1   
POL(cons(x1, x2)) = 2·x1 + 2·x2   
POL(incr(x1)) = 2·x1   
POL(n__incr(x1)) = 2·x1   
POL(nats) = 0   
POL(odds) = 0   
POL(pairs) = 0   
POL(s(x1)) = 2·x1   
POL(tail(x1)) = 2 + 2·x1   




↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
QTRS
          ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ODDSINCR(pairs)
NATSNATS
PAIRSODDS
ODDSPAIRS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)
ODDSINCR(pairs)
NATSNATS
PAIRSODDS
ODDSPAIRS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 1 less node.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ UsableRulesProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ QDPSizeChangeProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INCR(cons(X, XS)) → ACTIVATE(XS)
ACTIVATE(n__incr(X)) → INCR(X)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ UsableRulesProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PAIRSODDS
ODDSPAIRS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ NonTerminationProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PAIRSODDS
ODDSPAIRS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

The TRS P consists of the following rules:

PAIRSODDS
ODDSPAIRS

The TRS R consists of the following rules:none


s = ODDS evaluates to t =ODDS

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

ODDSPAIRS
with rule ODDSPAIRS at position [] and matcher [ ]

PAIRSODDS
with rule PAIRSODDS

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.





↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

NATSNATS

The TRS R consists of the following rules:

natscons(0, n__incr(nats))
pairscons(0, n__incr(odds))
oddsincr(pairs)
incr(cons(X, XS)) → cons(s(X), n__incr(activate(XS)))
incr(X) → n__incr(X)
activate(n__incr(X)) → incr(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ RRRPoloQTRSProof
    ↳ QTRS
      ↳ RRRPoloQTRSProof
        ↳ QTRS
          ↳ DependencyPairsProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ UsableRulesProof
QDP
                        ↳ NonTerminationProof

Q DP problem:
The TRS P consists of the following rules:

NATSNATS

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

The TRS P consists of the following rules:

NATSNATS

The TRS R consists of the following rules:none


s = NATS evaluates to t =NATS

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from NATS to NATS.